

Webinars

enhance

Resources for **DAIRYWOMEN** without leaving the farm

DairyGirlNetwork.com

Use of Milk Fatty Acids to Make Nutrition and Management Decisions

Heather Dann, Rick Grant, & Dave Barbano Dairy Girl Network Webinar, September 21, 2018

Used world-wide to measure fat, protein, and lactose for payment and dairy herd improvement programs

Develop new tools in milk analysis for bulk tank using mid infrared technology to provide information to support decision making for feeding and general management of the herd

Key Findings from Monitoring 430 Farms over a 15-Month Period with Milk Fatty Acid Metrics

 Milk fat and protein increased when de novo fatty acids in milk increased

 Occurred for both Holstein and Jersey herds

Holstein Farms

6.0

Barbano, 2016

Bulk Tank Milk Report for Farmer & Consultant

TRANS_DATE TANK P 07-MAR-2017 1 1 05-MAR-2017 1 1 04-MAR-2017 1 1 03-MAR-2017 1 1	POUNDS 15480	BFAT 4.13	ркот 3.17		TSOL	SNF	OSOL	CELL	MUN	DEN	MIX	PREF	DBOND	RAW	PAST	PI	CRYC
07-MAR-2017 1 05-MAR-2017 1 04-MAR-2017 1 1 1 03-MAR-2017 1	15480	4.13	3.17	1.96		·											
05-MAR-2017 1 1 04-MAR-2017 1 1 03-MAR-2017 1 1	15480		1	4.00	13.05	8.92	5.75	140	12.86	0.99	1.44	1.03	0.282				550
04-MAR-2017 1 1 03-MAR-2017 1 1		4.17	3.19	4.85	13.12	8.95	5.7 6	180	11.56	1.00	1.37	1.76	0.280				536
03-MAR-2017 1 1	15674	4.27	3.19	4.88	13.25	8.98	5.7 9	190	11.9	1.03	1.40	1.84	0.285				548
	15932	4.19	3.19	4.85	13.13	8.94	5.75	180	12.95	1.00	1.38	1.77	0.285				546
02-MAR-2017 1 1	15846	4.04	3.15	4.88	12.97	8.93	5.78	110	13.16	0.98	1.29	1.76	0.289				536
01-MAR-2017 1 1	15824													3	5	15	
28-FEB-2017 1 1	16018	4.13	3.16	4.87	13.03	8.9	5.74	110	12.85	0.96	1.44	1.58	0.282				538
27-FEB-2017 1 1	15695	4.1	3.21	4.88	13.12	9.02	5.81	100	13.28	1.04	1.33	1.79	0.268				544
26-FEB-2017 1 1	15889	4.16	3.17	4.9	13.12	8.96	5.7 9	140	13.04	0.97	1.49	1.58	0.285				543
25-FEB-2017 1 1	15738	4.2	3.17	4.88	13.13	8.93	5.76	120	13.17	0.94	1.54	1.55	0.283				544
24-FEB-2017 1 1	15824	4.16	3.15	4.88	13.08	8.92	5.77	130	13.9	0.94	1.53	1.51	0.293				542
23-FEB-2017 1 1	16039	4.12	3.16	4.89	13.04	8.92	5.76	120	13.04	0.92	1.54	1.46	0.292				547
22-FEB-2017 1 1	16104	4.22	3.16	4.85	13.11	8.89	5.73	90	13.09	0.92	1.52	1.55	0.295				544
21-FEB-2017 1 1	15588	4.28	3.17	4.85	13.17	8.89	5.72	120	13.95	0.94	1.61	1.47	0.284				545
20-FEB-2017 1 1	16125	4.2	3.17	4.85	13.08	8.88	5.71	110	13.42	0.92	1.56	1.49	0.291				544
19-FEB-2017 1 1	15996	4.26	3.16	4.83	13.1	8.84	5.68	150	11.61	0.92	1.64	1.46	0.277				544

Testing Facilities For Milk Fatty Acid Metrics

What are Milk Fatty Acid Metrics? **Are They Useful?**

Preformed Fatty Acids

Milk Fat Composition

Most Variable Component of Milk

• 98% triglycerides

- More than 400 unique fatty acids (FA) in milk (GC analysis)
- About 20 FA make up the majority
 - Broadly grouped into 3 subcategories

Milk Fatty Acid (FA) Groups

• De novo FA - < C16

- Made in the mammary gland
- Influenced by rumen fermentation/function
- 18-30 relative % (21-26)

• Preformed FA - > C16

- From fat the diet
- From body fat mobilization
- 32-42 relative % (35-42)
- Mixed origin FA C16
 - From fat the diet (preformed)
 - Made in the mammary gland (de novo)
 - 30-40 relative % (35-42)

Fat and Fatty Acid Groups – Relationship in Bulk Tank Milk

Milk Fatty Acid Profiles Provide Insight: Performance and Health of Cow/Herd

- Profile of de novo, mixed, and preformed fatty acids reflect:
 - Diet and dietary changes
 - CHO fermentability, RUFAL, forages...
 - Management environment
 - Behavior, rumen pH
 - Physiological state of cow
 - Risk of milk fat depression
 - Energy balance
 - Stage of lactation

Focus on De Novo Fatty Acids...

 De novo fatty acids reflect rumen function – especially fiber fermentation

• Acetate and butyrate are building blocks

Focus on De Novo Fatty Acids...

 Rumen conditions that enhance microbial fermentation stimulate microbial protein production and increase milk protein content

 De novo fatty acids in milk fat tells us how well the cow is being fed and managed for optimal rumen fermentation conditions

How Should We Use Milk Fatty Acid Metrics?

- Herd "snapshot" and troubleshooting
- Evaluating changes over time

Troubleshooting Herds

Milk Samples over Multiple Days, Herd Average Plotted

Troubleshooting Herds

Milk Samples over Multiple Days, Herd Average Plotted

Troubleshooting Herds

Milk Samples over Multiple Days, Herd Average Plotted

Prediction of Fat % (Y) From Milk Fatty Acid Metrics (X)

	De Novo FA, g/100	Mixed Origin FA,	Preformed FA,	Unsaturation,
	g milk	g/100 g milk	g/100 g milk	DB/FA
40 Holstein Herds	Y = 2.297X + 1.844	Y = 1.540X + 1.586	Y = 0.793X + 2.774	Y = -8.583X + 6.421
(St. Albans 2015)	R ² = 0.80	R ² = 0.88	R ² = 0.07	R ² = 0.69
167 Holstein Herds	Y = 2.233X + 1.800	Y = 1.892X + 1.179	Y = 1.289X + 1.911	Y = -7.449X + 5.971
(US 2016-2017)	R ² = 0.61	R ² = 0.79	R ² = 0.35	R ² = 0.31

Barbano et al., 2017; Barbano et al., unpublished

Expected vs Actual Results – A Holstein Example with a Goal of 3.8% Fat

St. Albans herds 2015

Courtesy of M. Woolpert

Research Conducted on St. Albans Coop Herds

Better Understand Management and Nutrition Differences between Herds with High and Low De Novo Fatty Acids

	High	Low
2014 – Holstein, Jersey, mixed		
Fat, %	4.55	3.90
True protein, %	3.50	3.16
De novo FA, g/100 g milk	1.13	0.90
Mixed FA, g/100 g milk	1.65	1.36
Preformed FA, g/100 g milk	1.52	1.43
2015 – Holstein		
Fat, %	3.96	3.75
True protein, %	3.19	3.10
De novo FA, g/100 g milk	0.92	0.81
Mixed FA, g/100 g milk	1.53	1.41
Preformed FA, g/100 g milk	1.27	1.30

Woolpert et al., 2016; Woolpert et al., 2017

Woolpert et al., 2016; Woolpert et al., 2017

High de novo herds tend to be...

5x more likely to delivery feed 2x/d in freestall

11x more likely to delivery feed 5x/d in tiestalls

Woolpert et al., 2016; Woolpert et al., 2017

High de novo herds tend to be...

10x more likely to provide ≥18 in bunk space/cow

5x more likely to stock stalls at ≤110%

Need to Get the Diet and the "Dining Experience" Right

Must focus on

diet formulation

&

management environment

Factors Associated with Increased Risk of Milk Fat Depression

Diet Factors

- Fermentable carbohydrates
 - Starch
 - Forage fiber
 - peNDF
- Fats (RUFAL)
 - C18:1 + C18:2 + C18:3
 - < 3.5% of diet DM</p>
- Feed additives (+/-)
- Yeasts/molds

Cow/Environment/Management Factors

- Genetics
- Parity
- Days in milk
- Season
- Time budget (behavior)
 - Stocking density
- Feeding strategy
 - TMR vs. PMR vs. component
 - Frequency of feed delivery/push up

Soybeans, RUFAL, and Low Milk Fat

- Snapshot: ~3.4 to 3.5% fat
 - 0.77 g de novo FA/100 g milk
 - 1.09 g mixed FA/100 g milk
 - 1.30 g preformed FA/100 g milk
 - 0.35 double bonds/FA
- Problem: Diet too high in RUFAL
 - Use of home grown roasted soybean
 - Ground extremely fine with hammer mill

Solution: ↑ grind size

- Outcome: ≥ 3.7% fat
 - 0.94 g de novo FA/100 g milk
 - 1.18 g mixed FA/100 g milk
 - 1.56 g preformed FA/100 g milk
 - 0.31 double bonds/FA

Herd Level Risk Factors for Milk Fat Depression

- 79 herds feeding monensin in the NE and MW US
- Several *trans*-C18:1 fatty acids (products of alternate pathways of ruminal biohydrogenation) were negatively related to herd milk fat
- Milk fat content of <u>fatty</u> <u>acids synthesized de novo</u> in the mammary gland were positively related to bulk tank milk fat

Herd Level Risk Factors for Milk Fat Depression: Relationship with TMR Composition

- No single diet component accounted for more than 11% of the variation in herd level milk fat percentage
- 4 factors together (starch content, monensin, PUFA, and MUFA) only accounted for 32% of the variation in herd milk fat percentage
- Indicates many variables contribute to low milk fat and herds experiencing low milk fat will need to examine many potential risk factors when working to troubleshoot milk fat depression

Milk Fat Depression Timeline When Feeding "High Risk" Diets

Induction

- When did the problem start?
- After a diet change 7 to 10 day lag
- Consider diet PUFA, CHO fermentability, rumen modifiers, feeding management

Recovery of Milk Fat

- When should it improve?
- After a diet change 10 to 14 days

Rico and Harvatine, 2013; Harvatine, 2015

How Should We Use Milk Fatty Acid Metrics?

- Herd "snapshot" and troubleshooting
- Evaluating changes over time

Monitor Fatty Acid Metrics in Bulk Tank Milk for Changes Over Time

Fatty Acid Metric	Increases	Decreases
De novo FA	 Positive impact on milk fat and/or protein Response to improved rumen function and/or feed quality 	 Evaluate management and nutrition Did an unexpected change occur?
Mixed origin FA	 Response to increased dietary fat Possible response to de novo synthesis 	 Evaluate management and nutrition Did an unexpected change occur?
Preformed FA	 Response to more body fat mobilization or increased dietary fat 	 Milk fat may decrease Energy partitioning change
Unsaturation Index	 Greater risk for milk fat depression 	

Fat %

Variation in November... Diet Changed

(More BMR CS and Different Feeder)

Forage Quality Changed Unexpectedly

Factors Affecting Variation Within & Between Herds

- Management related to feeding, housing, and milking of cows
- Diet and feed quality
- Consistency in day to day routine
 - Affects time budget of cow

- Days off and vacations
- Weather and season changes
- Herd demographics (parity, DIM)
- Filling sequence of multiple tanks

Monthly Averages for Tank 1 and 2 Tank 1: 4:30 am, 8:30 pm Tank 2: 12:30 pm

Monthly Averages for Tank 1 and 2 Tank 1: 4:30 am, 8:30 pm Tank 2: 12:30 pm

Milk Solids

Dec-17

86 lb milk, 3.85% fat, 2.90% protein

Jan-18

90 lb milk, 4.00% fat, 3.00% protein

What Else is Needed to Interpret Milk Fatty Acid Metrics?

Seasonal Changes in Milk Composition

40 St. Albans Coop herds

Seasonal Changes in Milk Composition

40 St. Albans Coop herds

Seasonal Changes in Milk Composition

40 St. Albans Coop herds

Stage of Lactation Affects Milk Components

Holstein herd, ~90-95 lb milk/d, TMR feeding system

Stage of Lactation Affects Milk Fatty Acid Metrics

Holstein herd, ~90-95 lb milk/d, TMR feeding system

Holstein Herd Distribution

Going Beyond Bulk Tank Sampling...

Bulk Tank/Tanker

Group/Pen/String

Cow

Bulk Tank vs. In-line Group Sampling (More Sensitivity)

Bulk Tank De Novo FA Changed when Fat % Did Not

Holstein Herd – Group Example

Weekly Variation in Pens - Fat

Weekly Variation in Pens – De Novo FA

Pen

Weekly Variation in Pens – Preformed FA

Pen

Commercial Herds – Group Samples

Commercial Herds – Group Samples

Blood NEFA can be Predicted from Milk During the Fresh Period

 Provides information about the severity and duration of the negative energy balance (fat mobilization)

• Early warning of problems ahead

Milk Predicted Blood NEFA is Higher for Cows with Ketosis or Displaced Abomasum

Fatty Acid Metrics for Cows with Ketosis

Fatty Acid Metrics for Cows with Displaced Abomasum

Milk Fatty Acid Metrics – Another Tool for Your Toolbox

- In conjunction with
 - Diet information
 - Management information, other systems
 - On-farm assessment
 - Don't use the FA information "in a vacuum"
- Can give you clues as to what is happening
 - More specific than milk fat or protein %
 - Low milk fat can be caused by different factors MIR FA information may allow you to identify what is wrong
 - May allow more rapid decision making

www.whminer.org dann@whminer.com

Thank you for attending Dairy Girl Network's Enhance Webinar

